

International Water Alliance Saxony

Hydrologic effects of climate change in the Western Bug Basin

Thomas Pluntke

K. Barfus, A. Myknovych^{*1} and C. Bernhofer

Technische Universität Dresden, Germany Institute of Hydrology and Meteorology

*1 Ivan Franko University, Lviv

HELMHOLTZ ZENTRUM FÜR UMWELTFORSCHUNG UFZ

Bundesministerium für Bildung und Forschung

Funding:

Motivation

- Context: Integrated Water Resource Management IWRM
- Consideration of future scenarios for a sustainable water management

Motivation

IWAS

• Ukraine, Western Bug:

- Problems: bad water quality, insufficient water treatment, intensive agriculture, complicated institutional conditions
- Aims: system analysis; model based test of management options; future scenarios; governance and technical concepts
- Water balance as pre-requisite to determine the matter balance

Model SWAT

- Soil and Water Assessment Tool (<u>http://swatmodel.tamu.edu/</u>)
- Public domain
- Process oriented river basin scale model
- Quantify water and matter fluxes and the impact of land management practices in large, complex watersheds

Anricultural Policy Environmental EXtender (APEX) Model: An

Jun 13-17,

Toledo, Spain

IWAS 🍞

Data and investigation area

Model input data

- Daily meteorological data
 - Precipitation
 - Temperature (Max, Min)
 - Global radiation
 - Relative humidity
 - Wind speed

- \Rightarrow Sources of historical data (1961-2008):
 - <u>http://eca.knmi.nl/</u> and <u>http://www.ncdc.noaa.gov</u>
 - Rostotsky Landscape Geophysical Station in Briuchovychi (Ivan Franko University Lviv)

Low precipitation gauge density: - in Germany 50 times more gauges

Data and investigation area

Model input data: Future projections

- 2051-2080, Emission scenario SRES-A1B
- Global Climate Model (GCM): ECHAM5/MPIOM
 - Spatial resolution: ~ 130 km
- Regional Climate Model (RCM): REMO
 - Spatial resolution: ~ 25 km

Global Model

Regional Model

Use of the grid-cell with minimum distance to centre of the catchment

Data and investigation area

Digital Elevation Model (range: 200 – 480m) Source: http://srtm.csi.cgiar.org/

Landcover: Landsat-TM5 (15m resolution, 1989)

 CORINE landcover classification scheme

Landuse

Subsistence farming

Industrial farming

- No details about:
 - Crops: (cereals, corn, potatos, cabbage)
 - Plant characteristics (LAI etc.)
 - Drainage

IWAS

Drainage dykes

Soil

- Scale 1:200.000; map of 1969, no information below forest
- Filling of gaps using a complex approach
- Classification according to WRB
- derivation of soil and hydraulic parameters together with ukrainan experts and field campaigns

Past water balance

Results of SWAT modelling:

- -Problems with representativity of gauges (precipitation, radiation)
- -contrary trends for runoff (positive) and precipitation (negativ) ?

Results of SWAT modelling:

Period	Precipitation (mm)	Snow fall (%) *1	Runoff (%) *1	Evapotranspi- ration (%) *1	Potential Evapotranspi- ration (%) *1
1968-1990	881	17	49	48	79

*1 in % from precipitation

- Bias corrected precipitation

Future water balance

Climatological comparison

(observation 1961-90 / scenario 2051-80)

- Mean yearly precipitation
 REMO –8% and ECHAM -20%
- Mean yearly Tmax +1.8 K; Tmin +3.6 K
- Not shown:

- Rel. Humidity REMO 0% ECHAM +8%
- Wind +13%
- Global radiation +3%

Results of SWAT modelling:

Period	Precipitation (mm)	Snow fall (%) *1	Runoff (%) *1	Evapotranspi- ration (%) *1	Potential Evapotranspi- ration (%) *1
1968-1990	881	17	49	48	79
2051-2080	Trend				T
REMO	812	14	37	59	114
ECHAM	700	12	44	51	103

*1 in % from precipitation

Future water balance

Conclusions

- Different climate signals of climate models ECHAM and REMO
- Changes of water balance recognizable
 - Less precipitation less frequent and less snow
 - Increased Potential Evapotranspiration; Evapotranspiration unclear
 - Decreased runoff throughout the year: similar hydrographs → critical, because of decreasing dilution of contaminants, especially in autumn
 - Water stress for plants in late summer

Conclusions

- Uncertainty of water balance still high; reasons:
 - Meteorological stations do not properly represent catchment (esp. rainfall and global radiation)
 - Accuracy of input data (discharge, climate, soil, land use, drainage)
 - Uncertain results of the climate models

Outlook

- Improvement of input data
 - New data sources: satellite → LAI; other climate observation networks ...

"Which observation networks exist?"

"How is the reliability and availability of climate observations from agricultural networks?"

- Better future water balance estimations using
 - Regional Climate Model simulations (CosmoCLM) and
 - Projections of land use changes

Thank you for your attention!

Acknowledgements:

- Prof. Mukha and his colleagues from Rostotsky Landscape Geophysical Station in Briuchovychi, Ukraine, for data supply

Cornelia Burmeister for providing land use and Dr.
Kai Schwärzel and Filipa Tavares Wahren (Technische Universität Dresden) for providing soil information
Project funding: Federal Ministry of Education and

Research of Germany

