

International Water Research Alliance Saxony

Application and Evaluation of a Regional Climate Model for Eastern Europe

Dirk Pavlik & Dennis Söhl

Technische Universität Dresden Institute of Hydrology and Meteorology Chair of Meteorology

Kiev, 17.11.2010

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH - UFZ

×

Federal Ministry of Education and Research

Content

- Project overview
- Modelling approach
- Model setup
- Results and Evaluation
- Climate projections
- Conclusions and outlook

Project Overview - IWAS

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Project Overview – IWAS Ukraine

- Investigation area Western Bug river catchment.
- Catchment area approx 40tkm², of which about 10tkm² in UA.
- 2.5 million inhabitants (connection rate ~ 50%).
- Transboundary River -> PL, BY, UA.
- Eastern border of the European Union.
- Drains indirect into the Baltic Sea (tributary of the Vistula).
- Main problem: High organic pollutant concentrations due to insufficient clarification of municipal wastewater.
- The results of the climate modelling serve as drivers for further investigations and impact studies referring to climate change in the target region.

Source: BUG Report No. 2 (2002)

Dirk Pavlik & Dennis Söhl TU Dresden

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Slide <#> of 18

Modelling Approach

- Dynamic downscaling of global climate projections (7km horizontal resolution).
- Model: COSMO CLM (CCLM) (DWD, CLM-Community).
- Double nesting approach (downscaling-factor)
- Control run and evaluation (1973 1990) driver: reanalysis data ERA40
- Regional climate projections (IPCC SRES scenarios), driver: ECHAM 5 / MPI-OM (Max Planck Institute for Meteorology)

Modelling Approach

Climate projections

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Model Configuration

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Slide <#> of 18

1. Nesting

Evaluation 2. Nesting

- Method: comparison with interpolated station data (P, T2m)
- Interpolation method: Kriging (Ordinary Kriging, Kriging with Trend)
- Period: 1973 1990
- Horizontal resolution of the reference data 1 x 1 km
- Time step: monthly sums, monthly means
- Data sources: 1.) NOAA (http://www.ncdc.noaa.gov/)

2.) ECA (http://eca.knmi.nl/)

- 3.) data of the project partners (UA)
- Work steps: acquisition, data check, correction, spatial interpolation, accessment
- Problems: insufficient data availiability, sparse network density, missing meta data

Evaluation 2. Nesting

2m temperature [K], long-term means 1973-1990 (CCLM - reference data)

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Evaluation 2. Nesting

precipitation [mm], long-term means 1973-1990 (CCLM - reference data)

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Regional climate projections

- GCM (ECHAM 5/MPI-OM) as driver for CCLM
- IPCC SRES-scenarios:
 - A2 (extreme)
 - o B1 (moderate)
- period: 2010 2100

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Regional climate projections - Trends

year

year

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Regional climate projections - Climate Change Signal

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Problem: Strong positive precipitation signal because of biased driving data of the GCM !

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Problem:

Strong positive precipitation signal because of biased driving data of the GCM !

Solution:

Application of a statistical bias correction approach. Method: "quantile mapping"

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Bias-correction with "quantile mapping"

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Conclusions and Outlook

Conclusions

- The regional climate model CCLM was successful configurated and evaluated for the Bug River Catchment.
- The long-term mean of the precipitation is overestimated by the model in spring, summer and fall and underestimated in winter.
- 2m temperatures are well reproduced by the model and are promising.
- Climate projections show a clear positive trend for temperatures up to 2050.
- Projected precipitation has a strong positive bias due to biased forcing by the GCM.

Outlook

- Development and application of a bias correction for precipitation.
- Continuation of the climate projections up to 2100.
- Preparation of the results for hydrological model applications.

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden

Thank you for your attention!

The project IWAS is funded by the Federal Ministry of Education and Research (BMBF).

The CCLM is provided and developed by the CLM-Community.

The interpolation software InterMet was provided by the State Environment Agency Rheinland-Pfalz, Germany.

High performance computing resources and support came from the Center for Information Services and High Performance Computing (ZIH) Dresden.

Kiev, 17.11.2010

Dirk Pavlik & Dennis Söhl TU Dresden