Impact of climate change on wind driven upwelling season off the coast Peru-Chile

Katerina Goubanova, Boris Dewitte, Carlos Ruiz, Vincent Echevin, Ken Takahashi

Laboratoire d'Etudes en Géophysique et Océanographie Spatiale (LEGOS), Toulouse, France
Istituto del Mar del Peru (IMARPE), Callao, Peru
Instituto Geofisico del Peru (IGP), Lima, Peru
Laboratoire d'Océanographie et de Climatologie: Expérimentation et Approches Numériques (LOCEAN), Paris, France

Surface wind is a key aspect of the regional environment

Eastern Boundary Upwelling Systems

Exceptionally high biological productivity of the coastal ocean off Chile and Peru is due to the upwelling of cold, nutrient-rich waters.

Surface wind is a key aspect of the regional environment

Eastern Boundary Upwelling Systems

Exceptionally high biological productivity of the coastal ocean off Chile and Peru is due to the upwelling of cold, nutrient-rich waters.

The upwelling variability is controlled to a large extent by the low-level along-shore winds through Ekman transport and Ekman pumping.

Surface wind is a key aspect of the regional environment

Exceptionally high biological productivity of the coastal ocean off Chile and Peru is due to the upwelling of cold, nutrient-rich waters.

The upwelling variability is controlled to a large extent by the low-level along-shore winds through Ekman transport and Ekman
 pumping.

Objective: Assess the impact of climate change associated to increasing green house gases on regional low-level wind.

Outline

1. Introduction
2. Present climate wind regime
3. Large-scale CGCMs projections
4. Downscaling
a) General idea + Method used
c) Validation
5. Regional wind change
6. Summary
7. Out-going work \& Perspectives

Alongshore wind regime

QuikSCAT 2000-2009

Two regions of Coastal Jet events with local maxima in mean wind and variance near the coast

- off Central Peru ($\sim 15^{\circ} \mathrm{S}$)
- off Central Chile ($\sim 30^{\circ} \mathrm{S}$)

Bakun's hypothesis(1990)

Surface Air Temperature Increase 1960 to 2060

Future change in large-scale conditions

-
The climate projections of the IPCC GCMs show an increase in surface pressure just to the south of the SEP anticyclone (Garreaud and Falvey, 2009). The resulting increase in meridional pressure gradient drives an intensification of the southerly alongshore flow between about $25^{\circ} \mathrm{S}$ and $40^{\circ} \mathrm{S}$.

In the tropics, the IPCC models predict a reduction of the mean Walker (Vecchi and Soden, 2007) and Hadley circulations (Zhang and Song, 2006; Held and Soden, 2006; Gastineau et al., 2008)

Downscaling of the CGCM output. Method

Downscaling of the CGCM output. Method

Statistical downscaling

Relationship between the large-scale predictors and region variables of interest

$$
Y_{\text {obs }}=F\left(X_{\text {obs }}\right)+\varepsilon \longrightarrow F\left(X_{\text {CGCM }}^{\text {Future }}\right) \approx Y^{\text {Future }}
$$

Y - regional variables (predictands)
X - large-scale variables (predictors)
ε - error

$$
\begin{aligned}
& \text { F - Multiple linear regression } \\
& Y-10 \mathrm{~m} \text { wind from QuikSCAT 2000-2008, } 0.5 \times 0.5^{\circ} \\
& X-10 \mathrm{~m} \text { wind + SLP from NCEP, } 2.5^{\circ} \times 2.5^{\circ} \\
& \hline
\end{aligned}
$$

Validation of the downcaling method

- The skill of the downscaling method is assessed by comparing with the surface wind derived from the ERS satellite measurements, with in-situ wind observations collected by ICOADS and through cross-validation

Correlation between downscaled products over 1992-1999 and ERS wind (contour explained variance in \%)

El-Nino (Sep 1997) - La-Nina (Dec 1998)

(Goubanova et al., Climate Dynamics 2010)

CGCMs and scenarios

Present climate scenario - 20C3M 1981-2000
 Future climate scenario - A2 SRES 2081-2100

BCCR - BCM2.0	Bjerknes Centre for Climate Research	Norway
$\underline{\text { CGCM3.1(T47) }}$	 Analysis	Canada
$\underline{\text { CNRM - CM3 }}$	Météo-France / Centre National de Recherches Météorologiques	France
$\underline{\text { CSIRO - MK30 }}$	CSIRO Atmospheric Research	Australia
$\underline{\text { CSIRO - MK35 }}$	CSIRO Atmospheric Research	Australia
$\underline{\text { GFDL - CM2.0 }}$	US Dept. of Commerce / NOAA / / Geophysical Fluid Dynamics Laboratory	USA
$\underline{\text { GFDL - CM2.1 }}$	US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics Laboratory	USA
$\underline{\text { INGV - SXG }}$	Instituto Nazionale di Geofisica \& e Vulcanologia	Italy
$\underline{\text { IPSL - CM4 }}$	Institut Pierre Simon Laplace	France
$\underline{\text { INM-CM3.0 }}$	Institute for Numerical Mathematics	Russia
$\underline{\text { MRI - }}$	Meteorological Research Institute	Japan
$\underline{\text { GISS-ER }}$	NASA / Goddard Institute for Space Studies	USA

Results

Winter change

April - September
Multimodel ensemble mean

Summer change

October - March

Multimodel ensemble mean

Seasonal cycle change

Change in alongshore wind seasonal cycle: A2 - 20C3M

Seasonal cycle change

Change in alongshore wind seasonal cycle: A2 - 20C3M

Seasonal cycle change

Seasonal cycle change

Regional change in wind regime. Summary

1. Significant increase in upwelling favorable wind for the winter season: it reaches 7.5% off Central Peru and 20% off Central Chile
2. Intensification of the coastal jet core off Chile in summer
3. A significant decrease ($\sim 5 \%$) of along-shore wind off Peru during DJF
4. Increase of seasonal cycle in both zones of the coastal jet
5. Longer duration of the upwelling favorable season by ~ 3 weeks (2 months) off Central Peru (Chile).

- Off Chile the change is consistent with increasing surface pressure south of the SEP anticyclone and with a dynamical downscaling experiment using PRECIS regional model (Garreaud and Falvey, 2009).
- Off Peru the change is weak; apparently inconsistent with some observational record ..

On-going work \& Perspectives

1. Using of statistically downscaled wind in order to force regional oceanic model (ROMS) under climate scenarios (Echevin et al 2010, submitted)
2. Dynamical downscaling of wind using WRF model (CORDEX project):

- Wind + Heat flux for ROMS
- Study relative role of large- and small scale processes associated with change in wind

Thank you!

Wind off Central Peru: Variability at ENSO scale

Fig. 6. Left panel: Anti-correlation, on the ENSO time scale, of low-pass-filtered (12-month running means of monthly values) Pacific trade wind strength (Southern Oscillation Index) and intensity of upwelling-favorable wind stress off Peru (as reported by Bakun and Mendelssohn (1989)). Right panel: Correlation coefficients between series of annual and quarterly means of unfiltered monthly values of the two time series. Significance levels (two-tailed tests) are indicated.

Tongue El Niño versus Warm Pool (Modoki) El Niño

DJF

a)

Cold Tongue El Niño 1997/1998

b) Warm Pool/Modoki El Niño 2004/2005

Tongue El Niño versus Warm Pool (Modoki) El Niño

Tongue El Niño versus Warm Pool (Modoki) EJ Niño

DJF

a) Cold Tongue El Niño 1997/1998

b) Warm Pool/Modoki El Niño 2004/2005

Projections of anthropogenic climate change are associated with an increased frequency of the Warm Pool El Niño compared to the Cold Tongue El Niño (Yeh et al., 2009).

2000-2009

